반응형 [CV] CvT [출처] CvT: Introducing Convolutions to Vision Transformers [출처]: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale 요약논문 제목: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale저자: Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly.. 2024. 6. 7. [CV] EfficientNet [출처]: EfficientNet: Rethinking Model Scaling for Convolutional Neural NetworksEfficientNet: 합성곱 신경망의 모델 확장을 재고하다저자: Mingxing Tan, Quoc V. Le초록: EfficientNet은 합성곱 신경망(ConvNet)의 깊이, 너비, 해상도를 복합 계수를 사용하여 균형 있게 확장하는 새로운 방법을 제안합니다. 저자들은 모델 확장을 체계적으로 연구하고, 모든 차원을 균일하게 확장함으로써 더 나은 성능을 달성할 수 있음을 보여줍니다. 그들은 신경망 아키텍처 검색을 통해 새로운 기본 네트워크 EfficientNet을 설계하고, 이를 확장하여 이전의 ConvNet보다 더 나은 정확도와 효율성을 가진 모델들을 얻습니다... 2024. 6. 7. [CV] FPN [출처]: Feature Pyramid Networks for Object Detection 문서는 Feature Pyramid Networks(FPN)와 이들의 객체 탐지 및 분할에 대한 응용에 대해 다루고 있습니다. 주요 내용을 요약하면 다음과 같습니다:Feature Pyramids 소개:전통적인 이미지 피라미드는 메모리 제약과 훈련 및 테스트 간의 불일치로 인해 엔드 투 엔드 훈련에 적합하지 않습니다.ConvNet의 내재된 다중 스케일, 피라미드형 특징 계층을 활용하여 다중 스케일 특징 표현을 할 수 있습니다.Single Shot Detector(SSD):SSD는 ConvNet의 특징 계층을 사용하지만 작은 객체를 탐지하는 데 중요한 고해상도 맵을 재사용하지 못합니다.Feature Pyramid .. 2024. 6. 7. [CV] Faster R-CNN [출처]: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" 문서는 Region Proposal Networks (RPN)와 Fast R-CNN을 통합한 고급 객체 탐지 프레임워크를 소개합니다. 주요 내용을 요약하면 다음과 같습니다:초록 (Abstract):최신 객체 탐지 네트워크는 객체 위치를 가정하기 위해 영역 제안 알고리즘을 사용합니다.Faster R-CNN은 탐지 네트워크와 컨볼루션 특징을 공유하는 Region Proposal Network (RPN)를 도입하여 영.. 2024. 6. 7. [CV] Fast R-CNN [출처]: Fast R-CNN Fast R-CNN 요약Fast R-CNN 개요목적: 심층 컨벌루션 신경망을 사용한 효율적인 객체 탐지 방법 제안.혁신: 이전 방법(R-CNN, SPPnet)보다 속도와 정확도 향상.성능: VGG16 네트워크를 R-CNN보다 9배 빠르게 학습하고, 테스트 시 213배 더 빠름. PASCAL VOC 2012에서 더 높은 평균 정밀도(mAP) 달성.배경 및 문제점객체 탐지의 복잡성: 이미지에서 객체를 정확히 위치 지정하고 분류해야 하므로 복잡하고 느린 다단계 학습 파이프라인이 필요.R-CNN 단점: 느린 학습 및 테스트, 공간과 시간 소모가 크며, 여러 단계를 거쳐야 함(ConvNet 미세 조정, SVM 적합, 바운딩 박스 회귀자 학습).Fast R-CNN 기여단일 단계 학습:.. 2024. 6. 7. [CV] R-CNN [출처]: Rich feature hierarchies for accurate object detection and semantic segmentation 논문 요약: "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation"저자: Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik소속: UC Berkeley초록: 이 논문은 PASCAL VOC 데이터셋에서 객체 검출 성능이 정체된 문제를 해결하기 위해, 평균 정확도(mAP)를 30% 이상 향상시키는 간단하고 확장 가능한 알고리즘을 소개합니다. 제안된 방법은 VOC 2012에서 53.3%의 mAP를 달성했습니다... 2024. 6. 7. [CV] DeepLab [출처]: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs Term Model Architecture Method 2024. 5. 2. [CV] Mask R-CNN [출처]: Mask R-CNN Term Model Architecture Method 2024. 4. 30. [CV] FCN [출처]: Fully Convolutional Networks for Semantic SegmentationTerm Model Architecture Method 2024. 4. 30. [MMEngine] 개요 MMEngine - Pytorch를 기반으로 하는 deep learning models을 학습하기 위한 라이브러리 - Linux, Windows와 macOS를 지원함 MMEngine의 3가지 특징 1. 범용적이고 강력한 executor - 최소한의 코드로 복잡한 task 학습 가능 - timm, torchvision, detectorn2와 호환 가능 2. 통합된 인터페이스의 공개된 구조 - 통합된 API로 다른 작업에 적용 가능 - 높은 레벨의 추상화를 통해 다양한 장비를 지원(Nvidia CUDA, Mac MPS, AMD, MLU) 3. 학습 과정 Custmize 가능 - 레고 같이 모듈화된 training engine - 다양한 component 제공 - 다양한 level의 API들로 학습 과정 제어.. 2024. 1. 14. 이전 1 다음 반응형