반응형 [참고자료] 인공지능 1. PyTorch- PyTorch 2.3 공식 문서: https://pytorch.org/docs/stable/index.html- [교재] 2. Tensorflow- Tensorflow 2.17 공식 문서: https://www.tensorflow.org/- [교재] 3. 참고자료- [사이트] paperwithcode : 인공지능 관련 논문 및 코드 정리- [교재] Understanding Deep Learning : 인공지능 최신 정보 교재 및 학습 자료 총정리 2024. 7. 13. [로드맵] Python 로드맵 1. Python- Python3.10 → Python3.11 → Python3.121.1 Python (기본:Python3.10)- 환경설정- 소개 및 특징- 변수, 자료형 및 형변환: int/float/complex/bool/str/type- 연산자: - 산술: +(덧셈), -(뺼셈), *(곱셈), /(소수점나눗셈), //(정수나눗셈), %(나머지) - 비교: ==/!=/>/>=/1.2 Python(상세) 1.3 Python(추가: Python3.10 이후) 2. 자료구조2.1 자료구조(기본)- Array- Linked List- Stack- Queue- Deque- Hash- Tree- Heap(Priority_Queue)- Graph2.2 자료구조(심화)- AVL Tree- B Tre.. 2024. 7. 13. [pytorch] 버전별 특징 PyTorch 1.0 (2018년 12월)프러덕션 준비: PyTorch 1.0은 연구와 개발에서 프러덕션 준비가 된 라이브러리로 이동하면서 중요한 마일스톤을 달성했습니다.TorchScript: 모델을 스크립팅하고 JIT 컴파일을 통해 효율적인 실행을 할 수 있도록 지원.C++ 인터페이스: 파이썬뿐만 아니라 C++에서도 PyTorch 모델을 구축하고 학습시킬 수 있는 기능 제공.모듈화된 코드를 위한 모델 분할 및 배포: 다양한 장치에 효율적으로 모델을 분할하고 배포할 수 있도록 개선.PyTorch 1.1 (2019년 5월)TensorBoard 지원: TensorBoard를 통한 모델 학습 시각화 지원.1.0 기능 강화: JIT 컴파일러와 TorchScript의 성능 및 사용성 개선.더 많은 연산 지원: 새.. 2024. 7. 3. [PyTorch] 주요 개념 PyTorch는 페이스북의 AI 연구팀에서 개발한 오픈 소스 딥러닝 프레임워크로, 특히 연구와 개발 환경에서 많이 사용됩니다. PyTorch는 텐서 계산 및 동적 계산 그래프를 기반으로 하며, 이를 통해 복잡한 모델을 쉽게 설계하고 디버깅할 수 있습니다. PyTorch의 핵심 개념과 기능을 소개하겠습니다.1. 텐서(Tensor)텐서는 PyTorch의 기본 데이터 구조입니다. 텐서는 N차원의 배열로, 수학적 연산을 수행하는 데 사용됩니다.텐서는 torch.Tensor 클래스를 사용하여 생성할 수 있습니다. 예를 들어, 2x3 행렬을 생성하려면 다음과 같습니다.import torchx = torch.Tensor([[1, 2, 3], [4, 5, 6]])2. 자동 미분(Autograd)Autograd는 PyT.. 2024. 6. 8. [CV] U-Net [출처]: U-Net: Convolutional Networks for Biomedical Image Segmentation U-Net: 생의학 이미지 분할을 위한 컨볼루션 네트워크저자:Olaf Ronneberger, Philipp Fischer, Thomas Brox독일 프라이부르크 대학교요약:이 논문은 생의학 이미지 분할을 위한 컨볼루션 네트워크 구조와 훈련 전략을 소개합니다. 주요 특징은 다음과 같습니다:주석이 달린 샘플을 효율적으로 사용하기 위한 데이터 증강.맥락을 포착하는 수축 경로와 정밀한 위치 지정이 가능한 확장 경로를 가진 대칭 아키텍처.몇 개의 이미지로부터 엔드 투 엔드로 훈련 가능, 이전 방법보다 뛰어난 성능.빠른 분할 능력 (최근 GPU에서 512x512 이미지 분할이 1초 이내).구.. 2024. 6. 7. [CV] CvT [출처] CvT: Introducing Convolutions to Vision Transformers [출처]: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale 요약논문 제목: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale저자: Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly.. 2024. 6. 7. [CV] YOLO [출처]: You Only Look Once: Unified, Real-Time Object Detection 제공된 문서는 객체 탐지를 위한 새로운 접근법인 YOLO(You Only Look Once)에 대해 설명합니다. 주요 요점을 요약하면 다음과 같습니다:개요:YOLO는 객체 탐지를 단일 회귀 문제로 재정의하여, 단일 신경망을 통해 전체 이미지에서 한 번의 평가로 바운딩 박스와 클래스 확률을 직접 예측합니다.이 통합 아키텍처는 전체 탐지 파이프라인을 탐지 성능에 맞게 끝에서 끝으로 최적화할 수 있게 합니다.성능:YOLO는 매우 빠르며, 기본 모델로 초당 45 프레임(fps), Fast YOLO 버전으로는 초당 155 프레임을 실시간으로 처리할 수 있습니다.YOLO는 최첨단 시스템에 비해 위치 오류가.. 2024. 6. 7. [CV] SSD [출처]: SSD: Single Shot MultiBox Detector "SSD: Single Shot MultiBox Detector" 요약이 논문은 SSD(Single Shot MultiBox Detector)라는 방법을 소개합니다. 이 방법은 단일 딥 뉴럴 네트워크를 사용하여 이미지에서 객체를 탐지합니다. SSD는 경계 상자의 출력 공간을 각 특징 맵 위치에서 다양한 종횡비와 크기의 기본 상자로 이산화합니다. 예측 시, 네트워크는 각 기본 상자에 대해 각 객체 범주의 존재 여부를 점수화하고, 객체 모양에 더 잘 맞도록 상자를 조정합니다. SSD는 다양한 해상도의 여러 특징 맵에서 예측을 결합하여 다양한 크기의 객체를 자연스럽게 처리합니다.SSD의 주요 장점:제안 생성 및 이후의 픽셀 또는 특징 재.. 2024. 6. 7. [CV] Faster R-CNN [출처]: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" 문서는 Region Proposal Networks (RPN)와 Fast R-CNN을 통합한 고급 객체 탐지 프레임워크를 소개합니다. 주요 내용을 요약하면 다음과 같습니다:초록 (Abstract):최신 객체 탐지 네트워크는 객체 위치를 가정하기 위해 영역 제안 알고리즘을 사용합니다.Faster R-CNN은 탐지 네트워크와 컨볼루션 특징을 공유하는 Region Proposal Network (RPN)를 도입하여 영.. 2024. 6. 7. [CV] Fast R-CNN [출처]: Fast R-CNN Fast R-CNN 요약Fast R-CNN 개요목적: 심층 컨벌루션 신경망을 사용한 효율적인 객체 탐지 방법 제안.혁신: 이전 방법(R-CNN, SPPnet)보다 속도와 정확도 향상.성능: VGG16 네트워크를 R-CNN보다 9배 빠르게 학습하고, 테스트 시 213배 더 빠름. PASCAL VOC 2012에서 더 높은 평균 정밀도(mAP) 달성.배경 및 문제점객체 탐지의 복잡성: 이미지에서 객체를 정확히 위치 지정하고 분류해야 하므로 복잡하고 느린 다단계 학습 파이프라인이 필요.R-CNN 단점: 느린 학습 및 테스트, 공간과 시간 소모가 크며, 여러 단계를 거쳐야 함(ConvNet 미세 조정, SVM 적합, 바운딩 박스 회귀자 학습).Fast R-CNN 기여단일 단계 학습:.. 2024. 6. 7. 이전 1 2 3 4 ··· 6 다음 반응형