본문 바로가기
반응형
[CV] R-CNN [출처]: Rich feature hierarchies for accurate object detection and semantic segmentation 논문 요약: "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation"저자: Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik소속: UC Berkeley초록: 이 논문은 PASCAL VOC 데이터셋에서 객체 검출 성능이 정체된 문제를 해결하기 위해, 평균 정확도(mAP)를 30% 이상 향상시키는 간단하고 확장 가능한 알고리즘을 소개합니다. 제안된 방법은 VOC 2012에서 53.3%의 mAP를 달성했습니다... 2024. 6. 7.
[CV] Grad-CAM [출처]: Grad-CAM: Visual Explanation from Deep Networks via Gradient-based Localization 논문 요약: Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization저자Ramprasaath R. SelvarajuMichael CogswellAbhishek DasRamakrishna VedantamDevi ParikhDhruv Batra논문 개요이 논문은 Grad-CAM (Gradient-weighted Class Activation Mapping)이라는 기법을 제안하여, CNN 기반 모델의 결정을 시각적으로 설명할 수 있도록 하는 기술을 소개합니다. Grad-C.. 2024. 6. 7.
[CV] DenseNet [출처]: Densely Connected Convolutional Networks  요약: Densely Connected Convolutional Networks (DenseNet)개요DenseNet은 모든 레이어를 피드포워드 방식으로 서로 연결하여 정보 흐름을 최적화하는 네트워크 아키텍처입니다. 전통적인 컨볼루션 네트워크는 각 레이어 간 하나의 연결을 가지지만, DenseNet은 L(L+1)/2개의 직접 연결을 가집니다. 이러한 구조는 정보 손실을 줄이고, 특징 재사용을 촉진하며, 파라미터 수를 크게 줄이는 등의 장점이 있습니다. DenseNet은 CIFAR-10, CIFAR-100, SVHN, ImageNet과 같은 객체 인식 벤치마크에서 탁월한 성능을 보였습니다​​ .소개컨볼루션 신경망(CNN).. 2024. 6. 7.
[CV] ResNet [출처]: Deep Residual Learning for Image Recognition "Deep Residual Learning for Image Recognition" 요약저자: Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun (Microsoft Research)초록:깊은 신경망의 훈련 어려움을 해결합니다.층 입력을 참조하여 잔여 함수를 학습하도록 층을 재구성하는 잔여 학습 프레임워크를 소개합니다.잔여 네트워크(ResNets)가 최적화하기 더 쉽고 깊이가 증가함에 따라 정확도가 높아짐을 입증합니다.ImageNet 데이터셋에서 최대 152층의 잔여 네트워크를 평가하여 3.57%의 오류율로 최첨단 성능을 달성했습니다.COCO 객체 탐지 데이터셋에서도 깊은 표현.. 2024. 6. 7.
[CV] VggNet [출처]: Very Deep Convolutional Networks for Large-Scale Image Recognition논문 요약: Very Deep Convolutional Networks for Large-Scale Image Recognition논문 제목: Very Deep Convolutional Networks for Large-Scale Image Recognition저자: Karen Simonyan, Andrew Zisserman발표된 학회: ICLR 2015요약이 논문은 대규모 이미지 인식을 위해 매우 깊은 컨볼루션 신경망(ConvNets)의 효과를 조사합니다. 저자들은 16~19개의 가중치 레이어를 가진 네트워크를 평가하여 네트워크 깊이가 정확도에 미치는 영향을 분석하였습니다. .. 2024. 6. 7.
[CV] AlexNet [출처]: ImageNet Classification with Deep Convolutional Neural Networks 주요 내용 요약: AlexNet 논문 (ImageNet Classification with Deep Convolutional Neural Networks)저자: Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton1. 개요AlexNet은 ImageNet LSVRC-2010 콘테스트의 1.2백만 개의 고해상도 이미지를 1000개의 클래스에 분류하기 위해 개발된 대형 심층 합성곱 신경망(CNN)입니다.테스트 데이터에서 top-1 오류율 37.5%, top-5 오류율 17.0%를 달성했으며, 이는 이전 최첨단 기술보다 훨씬 우수한 성능입니다.이 신.. 2024. 6. 7.
[CV] LeNet-5 [출처]: GradientBased Learning Applied to Document Recognition LeNet-5 논문은 Yann LeCun 등 여러 연구자가 1998년에 발표한 논문으로, 손글씨 숫자 인식을 위한 합성곱 신경망(Convolutional Neural Network, CNN)의 아키텍처를 제안합니다. 이 논문은 합성곱 신경망을 통해 이미지 인식 문제를 해결하는 방법을 제시하며, LeNet-5는 특히 손글씨 숫자 인식에서 큰 성과를 보였습니다.주요 내용 요약배경 및 목적: 전통적인 패턴 인식 기법은 주로 특징 추출과 분류 단계를 분리하여 수행했습니다. 하지만 LeCun 등은 자동으로 특징을 학습하고 분류하는 신경망을 제안했습니다.LeNet-5 아키텍처:입력층: 32x32 픽셀의 이미.. 2024. 6. 7.
[생성 AI] 추가 학습 목록 생성 모델을 마스터한 후 다음으로 공부할 주제는 딥러닝과 인공지능 분야에서 다음과 같은 고급 주제들을 고려해 볼 수 있습니다:1. 강화학습 (Reinforcement Learning, RL)기본 개념: MDP (Markov Decision Process), 정책, 가치 함수, 보상, Q-러닝, SARSA.고급 주제: 딥 Q-러닝 (DQN), 정책 경사 방법 (Policy Gradient), Actor-Critic 방법, 강화학습을 통한 게임 플레이 (e.g., AlphaGo).2. 자연어 처리 (Natural Language Processing, NLP)기본 개념: 토큰화, 어휘사전, 문서 표현, 순환 신경망 (RNN), LSTM, GRU.고급 주제: 트랜스포머 (Transformer), BERT, GP.. 2024. 6. 5.
[생성 AI] 생성모델 커리큘럼 생성 모델 강의 계획안강의 개요강의 제목: 생성 모델의 이해와 응용강의 목표: 생성 모델의 기본 개념을 이해하고, 다양한 생성 모델의 구조와 원리를 학습하며, 실습을 통해 직접 생성 모델을 구현해 보는 것을 목표로 한다.대상: 머신러닝 기초를 이해하고 있는 대학생 및 관련 종사자강의 기간: 12주 (주 1회, 회당 2시간)강의 일정 및 내용주차주제내용실습/과제1주차생성 모델 개요생성 모델의 정의와 역사, 주요 응용 분야논문 읽기: Generative Adversarial Networks (GANs) 원본 논문2주차확률적 생성 모델확률적 모델의 기본 개념, Gaussian Mixture Model (GMM), Hidden Markov Model (HMM)GMM을 이용한 데이터 클러스터링 실습3주차Varia.. 2024. 6. 5.
[방법론] 인공지능 논문 읽기 1. 초록(Abstract) 및 결론(Conclusion) 읽기초록: 논문의 핵심 요약을 제공합니다. 연구의 목적, 방법, 주요 결과 및 결론이 간략히 설명되어 있습니다.결론: 연구의 주요 발견과 의의를 파악할 수 있습니다. 연구 결과가 어떤 의미를 가지는지, 그리고 연구의 한계와 미래 연구 방향을 이해하는 데 도움이 됩니다.2. 서론(Introduction) 읽기연구의 배경과 동기, 문제 정의, 연구 목표 등을 설명합니다. 이 부분을 통해 연구가 왜 중요한지, 어떤 문제를 해결하려고 하는지 이해할 수 있습니다.3. 관련 연구(Background or Related Work)현재 연구와 관련된 기존 연구를 설명합니다. 관련 연구를 통해 현재 논문이 어떤 공백을 메우려고 하는지 알 수 있습니다.4. 방법(.. 2024. 5. 31.
반응형