본문 바로가기
반응형
[CV] Cascade R-CNN [출처]: Cascade R-CNN: Delving into High Quality Object Detection 요약:논문 "Cascade R-CNN: Delving into High Quality Object Detection"은 객체 검출 성능을 향상시키기 위한 새로운 접근 방식을 소개합니다.요약:Cascade R-CNN은 훈련 중 과적합 문제와 추론 중 품질 불일치 문제를 해결하기 위해 고안된 다단계 객체 검출 프레임워크입니다. 낮은 교차 비율(IoU) 임계값으로 훈련된 전통적인 객체 검출기는 종종 잡음이 많은 검출 결과를 만듭니다. 훈련 중에 IoU 임계값을 높이는 것은 양성 샘플의 감소와 검출기의 최적 IoU와 입력 가설 간의 불일치로 인해 성능 저하를 초래할 수 있습니다.주요 기여:다단계 아.. 2024. 6. 7.
[CV] Faster R-CNN [출처]: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" 문서는 Region Proposal Networks (RPN)와 Fast R-CNN을 통합한 고급 객체 탐지 프레임워크를 소개합니다. 주요 내용을 요약하면 다음과 같습니다:초록 (Abstract):최신 객체 탐지 네트워크는 객체 위치를 가정하기 위해 영역 제안 알고리즘을 사용합니다.Faster R-CNN은 탐지 네트워크와 컨볼루션 특징을 공유하는 Region Proposal Network (RPN)를 도입하여 영.. 2024. 6. 7.
[CV] R-CNN [출처]: Rich feature hierarchies for accurate object detection and semantic segmentation 논문 요약: "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation"저자: Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik소속: UC Berkeley초록: 이 논문은 PASCAL VOC 데이터셋에서 객체 검출 성능이 정체된 문제를 해결하기 위해, 평균 정확도(mAP)를 30% 이상 향상시키는 간단하고 확장 가능한 알고리즘을 소개합니다. 제안된 방법은 VOC 2012에서 53.3%의 mAP를 달성했습니다... 2024. 6. 7.
반응형