반응형 [PyTorch] 20주차: 최신 딥러닝 연구 및 기술 동향 강의 목표최신 딥러닝 연구 동향 및 기술 트렌드 이해최신 기술 및 도구의 적용 방법 학습실전 프로젝트를 통해 최신 기술을 활용한 모델 개발 경험강의 내용1. 최신 딥러닝 연구 동향연구 동향 개요딥러닝의 발전과 주요 연구 분야최신 연구 동향 소개주요 연구 분야자율주행의료 영상 분석자연어 처리(NLP)강화 학습(Reinforcement Learning)생성 모델(Generative Models)2. 자연어 처리(NLP) 최신 기술Transformer 기반 모델Transformer 개념 및 구조BERT, GPT 등의 최신 언어 모델BERT를 활용한 문서 분류 예제from transformers import BertTokenizer, BertForSequenceClassificationfrom transform.. 2024. 5. 31. [PyTorch] 19주차: 딥러닝 모델의 윤리 및 책임감 있는 AI 개발 강의 목표AI와 딥러닝 모델의 윤리적 문제 이해책임감 있는 AI 개발 원칙 학습윤리적 AI 개발을 위한 실천 방법 논의 및 실습강의 내용1. AI와 딥러닝 모델의 윤리적 문제AI 윤리 개요AI와 딥러닝 모델의 사회적 영향력윤리적 문제와 책임감 있는 AI 개발의 필요성주요 윤리적 문제편향성(Bias)프라이버시(Privacy)투명성(Transparency)공정성(Fairness)신뢰성(Reliability)2. 책임감 있는 AI 개발 원칙공정성(Fairness)데이터 편향성 인식 및 제거다양한 인구통계학적 그룹에 대한 공정한 모델 개발투명성(Transparency)모델의 의사결정 과정 설명 가능성AI 시스템의 투명성 확보 방법프라이버시(Privacy)데이터 수집 및 처리 과정에서의 프라이버시 보호데이터 익명.. 2024. 5. 31. [PyTorch] 18주차: 최종 프로젝트 제출 및 개인 피드백 강의 목표최종 프로젝트 제출 및 발표각 프로젝트에 대한 개인별 피드백 제공향후 학습 및 커리어 발전 방향 제시강의 내용1. 최종 프로젝트 제출프로젝트 제출 준비각 그룹 또는 개인은 최종 프로젝트를 정리하여 제출 준비제출 항목: 프로젝트 코드, 보고서, 발표 자료프로젝트 제출프로젝트 코드 및 보고서 제출발표 자료 제출제출 기한: 강의 시작 전까지2. 최종 프로젝트 발표발표 준비각 그룹 또는 개인은 프로젝트 발표 준비발표 내용: 프로젝트 목표, 데이터셋, 모델 설계, 성능 평가, 결과 분석, 향후 과제 등발표 진행각 그룹 또는 개인이 발표를 진행발표 시간: 그룹당 10-15분, 발표 후 질의응답 시간 포함3. 프로젝트 평가 및 피드백평가 기준프로젝트의 창의성 및 독창성문제 정의 및 데이터 전처리 과정모델 설.. 2024. 5. 31. [PyTorch] 17주차: 심화 학습 및 최신 기술 동향 강의 목표심화 학습 주제 탐구최신 딥러닝 연구 동향 및 기술 트렌드 이해심화 학습 주제에 대한 실습 및 프로젝트 진행강의 내용1. 심화 학습 주제 소개딥러닝의 심화 학습 주제 소개강화 학습(Reinforcement Learning)생성적 적대 신경망(GANs, Generative Adversarial Networks)Transformer 및 BERT, GPT 등 최신 언어 모델메타 학습(Meta-Learning) 및 Few-Shot Learning2. 강화 학습(Reinforcement Learning)강화 학습 개념에이전트와 환경, 보상 및 정책주요 알고리즘: Q-Learning, Deep Q-Networks(DQN), Policy GradientsDQN 구현 예제import gymimport torc.. 2024. 5. 31. [PyTorch] 16주차: 최종 프로젝트 평가 및 종합 리뷰 강의 목표최종 프로젝트 결과 발표 및 평가종합 리뷰를 통해 학습 내용 정리 및 피드백 제공향후 학습 및 개발 방향 제시강의 내용1. 최종 프로젝트 발표프로젝트 발표 준비각 그룹 또는 개인은 최종 프로젝트 결과 발표 준비발표 내용: 프로젝트 목표, 데이터셋, 모델 설계, 성능 평가, 배포 및 운영, 결과 분석 등발표 진행각 그룹 또는 개인이 발표를 진행발표 시간: 그룹당 10-15분, 발표 후 질의응답 시간 포함2. 프로젝트 평가평가 기준프로젝트의 창의성 및 독창성문제 정의 및 데이터 전처리 과정모델 설계 및 성능 평가 방법모델 배포 및 운영의 적절성발표 내용의 명확성 및 완성도피드백 제공각 프로젝트에 대한 피드백 제공개선할 점 및 잘한 점 공유3. 종합 리뷰강의 내용 요약주요 주제 및 학습 목표 복습각 .. 2024. 5. 31. [PyTorch] 15주차: 모델의 성능 모니터링 및 유지보수 강의 목표모델 성능 모니터링의 중요성 이해실시간 예측 시스템 모니터링 방법 학습모델의 성능 유지보수 및 업데이트 전략 학습강의 내용1. 모델 성능 모니터링의 중요성성능 모니터링의 필요성모델의 성능 저하 감지 및 원인 분석실시간 예측 시스템의 신뢰성 유지모니터링의 주요 지표예측 정확도응답 시간자원 사용량 (CPU, GPU, 메모리)2. 실시간 예측 시스템 모니터링 방법로그 수집 및 분석예측 요청 및 응답 로그 수집로그 분석을 통한 성능 이슈 파악 import logging# 로그 설정logging.basicConfig(filename='app.log', level=logging.INFO)# Flask 예측 함수에 로그 추가def get_prediction(image_bytes): tensor = tr.. 2024. 5. 31. [PyTorch] 14주차: 모델 배포 및 운영 강의 목표모델 배포의 중요성 및 방법 이해PyTorch 모델을 배포하기 위한 다양한 기술 학습실전 프로젝트를 통해 모델 배포 및 운영 경험강의 내용1. 모델 배포의 중요성배포의 필요성학습된 모델을 실제 환경에 적용하여 예측 서비스 제공배포된 모델은 웹 애플리케이션, 모바일 앱, IoT 디바이스 등에서 사용할 수 있음배포의 주요 고려 사항성능 최적화: 예측 속도, 메모리 사용량 등안정성 및 확장성: 다양한 요청 처리 능력보안: 데이터 보호 및 접근 제어2. PyTorch 모델 저장 및 로드모델 가중치 저장 및 로드모델 가중치만 저장하여 나중에 불러오기전체 모델 저장 및 로드 # 모델 가중치 저장torch.save(model.state_dict(), 'model_weights.pth')# 모델 가중치 로드m.. 2024. 5. 30. [PyTorch] 13주차: 모델의 성능 평가 및 개선 강의 목표모델 성능 평가 지표 이해 및 적용모델 성능 개선을 위한 방법 학습실전 프로젝트를 통해 모델 성능 평가 및 개선 경험강의 내용1. 모델 성능 평가 지표평가 지표의 중요성모델 성능을 객관적으로 평가하기 위한 지표 필요성다양한 지표를 통해 모델의 강점과 약점 파악분류 문제의 평가 지표정확도(Accuracy)정밀도(Precision)재현율(Recall)F1 스코어(F1 Score)ROC-AUC (Receiver Operating Characteristic - Area Under Curve) from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score# 예측값 생성y_pred = mode.. 2024. 5. 30. [PyTorch] 12주차: 모델 해석 및 Explainable AI (XAI) 강의 목표모델 해석의 중요성 및 필요성 이해Explainable AI (XAI) 기법 학습PyTorch 모델을 해석하기 위한 다양한 도구와 기법 적용강의 내용1. 모델 해석의 중요성모델 해석이란?모델이 예측을 어떻게 수행했는지 이해하는 과정블랙박스 모델의 투명성 향상모델 해석의 필요성신뢰성 및 투명성 증대규제 준수모델 성능 향상에 도움2. Explainable AI (XAI) 개념XAI란?AI 시스템의 예측 결과를 이해하고 설명할 수 있도록 하는 기법다양한 이해관계자 (개발자, 사용자, 규제 기관 등)에게 모델의 작동 원리를 설명XAI 주요 기법Feature ImportancePartial Dependence Plot (PDP)SHAP (SHapley Additive exPlanations)LIME (L.. 2024. 5. 30. [PyTorch] 11주차: 모델의 성능 향상 기법 강의 목표모델의 성능을 향상시키기 위한 다양한 기법 이해하이퍼파라미터 튜닝과 모델 앙상블 방법 학습모델의 성능을 향상시키기 위한 실습 및 프로젝트 수행강의 내용1. 모델 성능 향상 개요모델 성능 향상의 필요성모델의 예측 성능을 최대화하고, 과적합 및 과소적합 문제 해결실전 프로젝트에서의 성능 향상의 중요성2. 하이퍼파라미터 튜닝하이퍼파라미터 튜닝 개념모델 학습에 영향을 미치는 하이퍼파라미터의 중요성하이퍼파라미터 최적화의 필요성튜닝 방법그리드 서치(Grid Search)랜덤 서치(Random Search)베이즈 최적화(Bayesian Optimization) from sklearn.model_selection import GridSearchCVfrom sklearn.ensemble import Random.. 2024. 5. 30. 이전 1 2 3 4 다음 반응형