본문 바로가기
반응형
[CV] YOLO v2 [출처]: YOLO9000: Better, Faster, StrongerYOLO9000은 실시간으로 9000개 이상의 객체를 인식할 수 있는 최첨단 객체 검출 시스템입니다. 주요 특징과 개선 사항은 다음과 같습니다:YOLOv2 개선 사항:배치 정규화: 수렴 속도를 높이고 과적합을 방지.고해상도 분류기: 더 높은 해상도의 입력 이미지를 사용하여 정확도 향상.앵커 박스 사용: 앵커 박스를 사용하여 예측을 단순화하고 재현율을 높임.차원 클러스터링: K-평균 클러스터링을 사용하여 더 나은 앵커 박스 초기값 설정.직접 위치 예측: 예측 안정성을 높임.세분화된 특징 사용: 작은 객체의 위치를 더 정확하게 잡아냄.멀티스케일 학습: 다양한 해상도에서 예측을 잘할 수 있도록 함.성능:PASCAL VOC와 COCO와 같은.. 2024. 6. 7.
[CV] YOLO [출처]: You Only Look Once: Unified, Real-Time Object Detection 제공된 문서는 객체 탐지를 위한 새로운 접근법인 YOLO(You Only Look Once)에 대해 설명합니다. 주요 요점을 요약하면 다음과 같습니다:개요:YOLO는 객체 탐지를 단일 회귀 문제로 재정의하여, 단일 신경망을 통해 전체 이미지에서 한 번의 평가로 바운딩 박스와 클래스 확률을 직접 예측합니다.이 통합 아키텍처는 전체 탐지 파이프라인을 탐지 성능에 맞게 끝에서 끝으로 최적화할 수 있게 합니다.성능:YOLO는 매우 빠르며, 기본 모델로 초당 45 프레임(fps), Fast YOLO 버전으로는 초당 155 프레임을 실시간으로 처리할 수 있습니다.YOLO는 최첨단 시스템에 비해 위치 오류가.. 2024. 6. 7.
[CV] Cascade R-CNN [출처]: Cascade R-CNN: Delving into High Quality Object Detection 요약:논문 "Cascade R-CNN: Delving into High Quality Object Detection"은 객체 검출 성능을 향상시키기 위한 새로운 접근 방식을 소개합니다.요약:Cascade R-CNN은 훈련 중 과적합 문제와 추론 중 품질 불일치 문제를 해결하기 위해 고안된 다단계 객체 검출 프레임워크입니다. 낮은 교차 비율(IoU) 임계값으로 훈련된 전통적인 객체 검출기는 종종 잡음이 많은 검출 결과를 만듭니다. 훈련 중에 IoU 임계값을 높이는 것은 양성 샘플의 감소와 검출기의 최적 IoU와 입력 가설 간의 불일치로 인해 성능 저하를 초래할 수 있습니다.주요 기여:다단계 아.. 2024. 6. 7.
[CV] EfficientDet [출처]: EfficientDet: Scalable and Efficient Object Detection "EfficientDet: Scalable and Efficient Object Detection" 요약이 논문은 효율성과 확장성을 염두에 두고 설계된 새로운 객체 탐지기 모델 군인 EfficientDet을 소개합니다. 주요 기여는 다음과 같습니다:BiFPN (양방향 피라미드 네트워크): EfficientDet은 효율적이고 빠른 다중 스케일 특징 융합을 가능하게 하는 가중 양방향 피라미드 네트워크(BiFPN)를 도입합니다. BiFPN은 학습 가능한 가중치를 사용하여 다양한 입력 특징의 중요도를 결정하여 융합 과정을 향상시킵니다.복합 스케일링 방법: 이 논문은 백본, 특징 네트워크, 박스/클래스 예측.. 2024. 6. 7.
[CV] EfficientNet [출처]: EfficientNet: Rethinking Model Scaling for Convolutional Neural NetworksEfficientNet: 합성곱 신경망의 모델 확장을 재고하다저자: Mingxing Tan, Quoc V. Le초록: EfficientNet은 합성곱 신경망(ConvNet)의 깊이, 너비, 해상도를 복합 계수를 사용하여 균형 있게 확장하는 새로운 방법을 제안합니다. 저자들은 모델 확장을 체계적으로 연구하고, 모든 차원을 균일하게 확장함으로써 더 나은 성능을 달성할 수 있음을 보여줍니다. 그들은 신경망 아키텍처 검색을 통해 새로운 기본 네트워크 EfficientNet을 설계하고, 이를 확장하여 이전의 ConvNet보다 더 나은 정확도와 효율성을 가진 모델들을 얻습니다... 2024. 6. 7.
[CV] RetinaNet [출처]: Focal Loss for Dense Object DetectionRetinaNet 요약저자: Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollar소속: Facebook AI Research (FAIR)초록이 논문은 COCO 벤치마크에서 최첨단 정확도를 달성하는 1단계 객체 탐지기인 RetinaNet을 소개합니다. 주요 혁신은 Focal Loss로, 이는 훈련 중에 발생하는 극단적인 전경-배경 클래스 불균형 문제를 해결하기 위해 설계되었습니다.소개현재 최첨단 객체 탐지기는 2단계 접근 방식(예: R-CNN)에 의존합니다. 1단계 탐지기는 더 빠르고 단순하지만 정확도에서 뒤처져 왔습니다. 이 논문은 클래스 불균형을 주요 문제로 식.. 2024. 6. 7.
[CV] SSD [출처]: SSD: Single Shot MultiBox Detector "SSD: Single Shot MultiBox Detector" 요약이 논문은 SSD(Single Shot MultiBox Detector)라는 방법을 소개합니다. 이 방법은 단일 딥 뉴럴 네트워크를 사용하여 이미지에서 객체를 탐지합니다. SSD는 경계 상자의 출력 공간을 각 특징 맵 위치에서 다양한 종횡비와 크기의 기본 상자로 이산화합니다. 예측 시, 네트워크는 각 기본 상자에 대해 각 객체 범주의 존재 여부를 점수화하고, 객체 모양에 더 잘 맞도록 상자를 조정합니다. SSD는 다양한 해상도의 여러 특징 맵에서 예측을 결합하여 다양한 크기의 객체를 자연스럽게 처리합니다.SSD의 주요 장점:제안 생성 및 이후의 픽셀 또는 특징 재.. 2024. 6. 7.
[CV] SPPNet [출처]: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition요약: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition소개문제점: 기존의 심층 합성곱 신경망(CNN)은 고정된 크기의 입력 이미지를 필요로 하며, 이는 다양한 크기와 비율의 이미지를 처리하는 데 제한이 있다. 이를 해결하기 위해 이미지의 크기를 자르거나 왜곡하여 고정된 크기로 맞추지만, 이는 인식 정확도를 떨어뜨릴 수 있다.해결책: 공간 피라미드 풀링(SPP) 레이어를 도입하여 고정 크기의 입력 제약을 제거하고, 다양한 크기와 비율의 이미지를 처리할 수 있는 SPP-n.. 2024. 6. 7.
[CV] FPN [출처]: Feature Pyramid Networks for Object Detection  문서는 Feature Pyramid Networks(FPN)와 이들의 객체 탐지 및 분할에 대한 응용에 대해 다루고 있습니다. 주요 내용을 요약하면 다음과 같습니다:Feature Pyramids 소개:전통적인 이미지 피라미드는 메모리 제약과 훈련 및 테스트 간의 불일치로 인해 엔드 투 엔드 훈련에 적합하지 않습니다.ConvNet의 내재된 다중 스케일, 피라미드형 특징 계층을 활용하여 다중 스케일 특징 표현을 할 수 있습니다.Single Shot Detector(SSD):SSD는 ConvNet의 특징 계층을 사용하지만 작은 객체를 탐지하는 데 중요한 고해상도 맵을 재사용하지 못합니다.Feature Pyramid .. 2024. 6. 7.
[CV] Faster R-CNN [출처]: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" 문서는 Region Proposal Networks (RPN)와 Fast R-CNN을 통합한 고급 객체 탐지 프레임워크를 소개합니다. 주요 내용을 요약하면 다음과 같습니다:초록 (Abstract):최신 객체 탐지 네트워크는 객체 위치를 가정하기 위해 영역 제안 알고리즘을 사용합니다.Faster R-CNN은 탐지 네트워크와 컨볼루션 특징을 공유하는 Region Proposal Network (RPN)를 도입하여 영.. 2024. 6. 7.
반응형